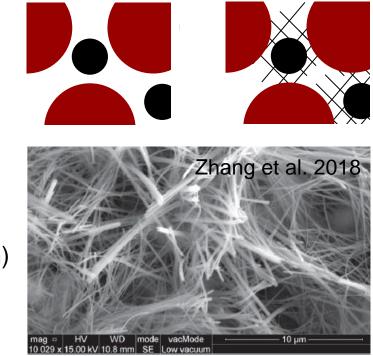
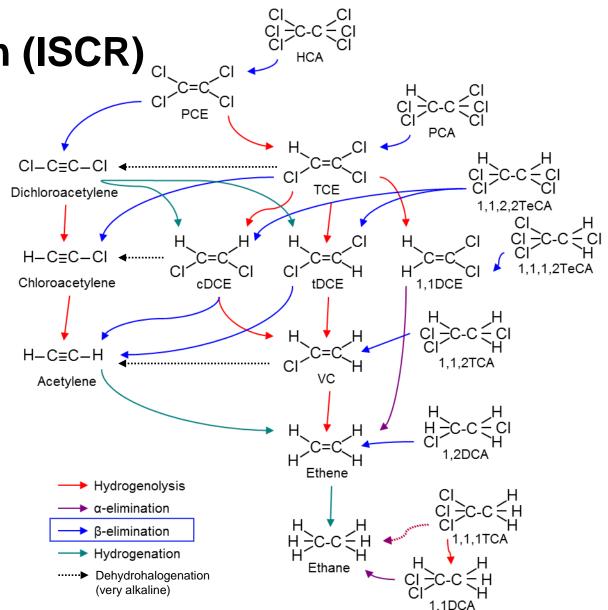


ATV Temadag 1. Soil Mixing som afværgemetode 4. marts 2019 Annika S. Fjordbøge

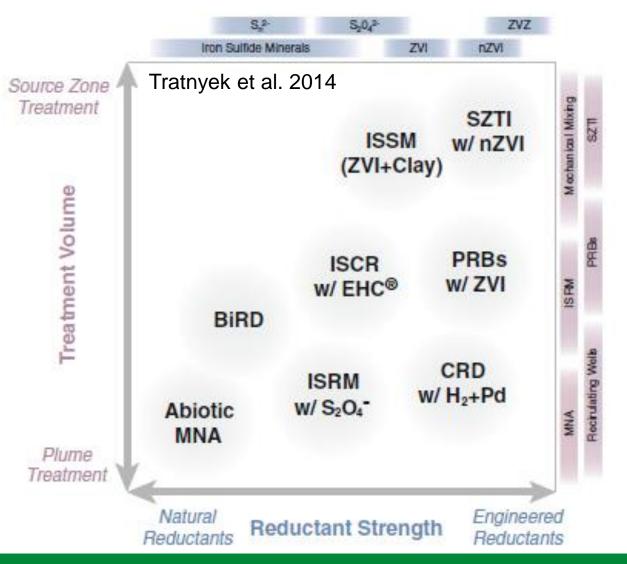
Nuværende vidensniveau omkring reaktanter


Hvordan udvælges reaktanter og hvad skal man være særligt opmærksom på

Reactive environment:


Awareness on interferences vs synergies

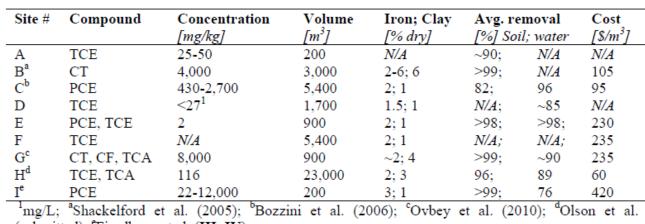
- ISS binders: **Portland cement** (blast furnace slag, flyash, lime, bentonite)
- Important hydration/curing processes:
 - Loss of moisture
 - Degradation processes occur in the water phase
 - Reduced porosity/conductivity
 - · Leaching reduced
 - Reaction processes can become diffusion controlled
 - Rise in temperature
 - Generally increase chemical reaction rates (and desorption)
 - Increase of pH
 - High pH can be either facilitate or inhibit reaction (reactant dependent)

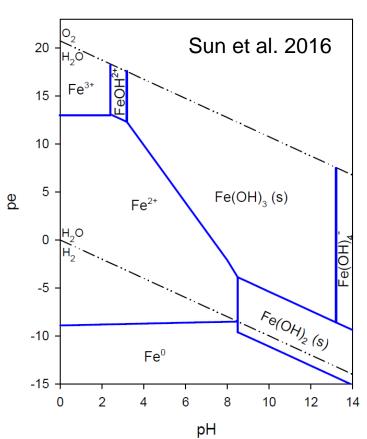

In situ chemical reduction (ISCR)

- Degradation by electron transfer from the reductant to the contaminant
- Contaminants with a desirable reductive pathway e.g. chlorinated aliphatics, some metals (e.g. Cr^{VI}) and nitroaromatics
- Removal rates and longevity are reductant dependent
 - Relatively fast removal possible with strong reductants
 - Extended contaminant contact to negate rebound and treat DNAPL (through better selectivity or longevity)

Reductants

- Variety of reductants
 - From intrinsic biogeochemical processes with weaker reductants to engineered strong reductants
- Weaker reductants
 - Fe^{II}-species
 - Oxides like green rust or magnetite
 - Sulfides like mackinawite or pyrite
- Stronger reductants
 - Zero valent metals (e.g. ZVI)
 - "Modified" ZVI (bimetallic, sulfidated)

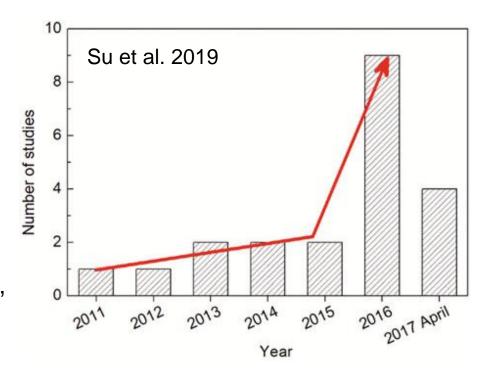


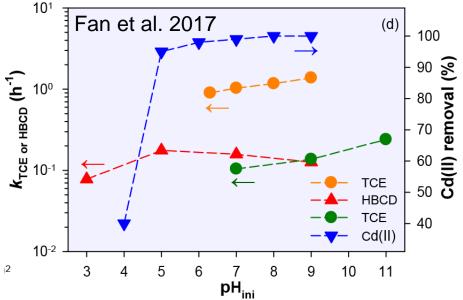

ZVI species

• Electron transfer to the contaminant

 $Fe^0 \rightarrow Fe^{2+} + 2e^{-}$

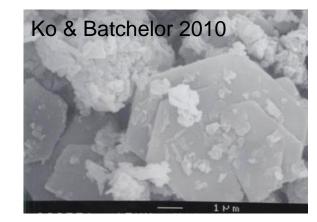
- Utilized with various particle sizes (nZVI, mZVI, gZVI) of different longevity
- Catalyzed bimetallic particles (noble metal catalyst like Pd) for more rapid reduction
- Sulfidated ZVI for better selectivity (less wasted on reaction with water)
- ZVI (mZVI/gZVI) is a field tested method with soil mixing (2-step)
 - High pH raises an issue for a 1-step approach

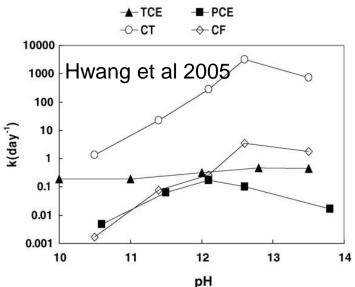




Sulfidated ZVI (and cement?)

- Sulfidated ZVI is an upcoming product
 - The sulfidated shell protects the ZVI core, which results in better selectivity
 - Degradation seen under alkaline conditions (S-nZVI), where no degradation was seen with regular nZVI
- New method, so the mechanisms are not yet well described
 - The optimal Fe/S ratio may depends on the target contaminant
 - Only recently commercial available products
- Selectivity, pH resilience and strong reductant
 - → Promising candidate for a 1-step approach with cement addition





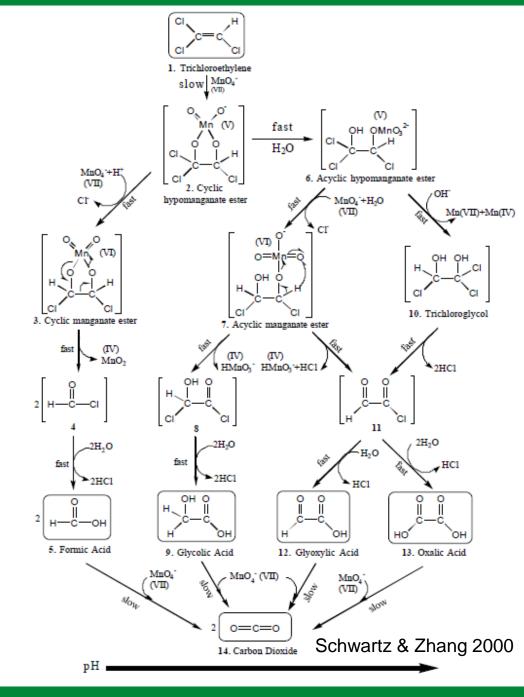
Fe^{II} minerals and salts (and cement?)

- Diverse group and varying reactivity found in laboratory studies; but it is generally found that:
 - less reactive than ZVI
 - sulfides are more reactive than oxides
 - the reactivity increase with increasing pH
 - the reactivity increase in the presence of dissolved $\ensuremath{\mathsf{Fe}}^{\ensuremath{\mathsf{II}}}$
 - Reactivity of Fe^{II}oxides on their own has been questioned
- Dissolved Fe^{II} alone is not a good reductant
- Lab experiments show degradation of chlorinated aliphatics with Fe^{II} in combination with cement
 - Mechanism uncertain (Fe^{II} bound to CaO/cement surfaces)
 - High pH (12-13) seems optimal for the degradation
 - \rightarrow Promising candidate for a 1-step approach with cement addition

In situ chemical oxidation (ISCO)

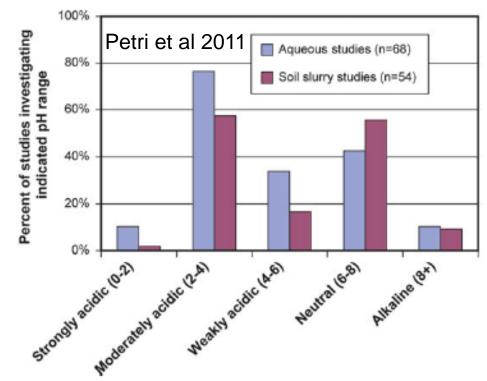
- Degradation by electron transfer from the contaminant to the oxidant
- Cover a broad range of contaminants e.g. CVOC, BTEX, PAHs, pesticides (versatility)
 - Mineralization of the contaminant to harmless products (e.g. CO₂, H₂O, ions)
 - Complex with several degradation pathways (risk of unknown intermediates, but normally few)
- Aggressive technology with rapid oxidant decomposition
 - Fast removal
 - Risk of rebound
 - DNAPL dissolution

=


Oxidants

Oxidant	Form	Potential (V) (acidic)	Potential (V) (alkaline)
Activated hydrogen peroxide (Hydroxyl radical)	OH•	2.7	1.6
Activated persulfate (Sulfate radical)	SO4+-	2.6	
Persulfate	S ₂ O ₈ ²⁻	2.0	
Hydrogen peroxide	H_2O_2	1.8	0.9
Permanganate	MnO ₄ -	1.7	0.6

- Radicals are the strongest oxidants
 - Fast decomposition
 - Radical scavengers in form of common anions (e.g. NO_3^- , CI^- , HCO_3^- , CO_3^{2-})
- Potential dependent on pH


Permanganate

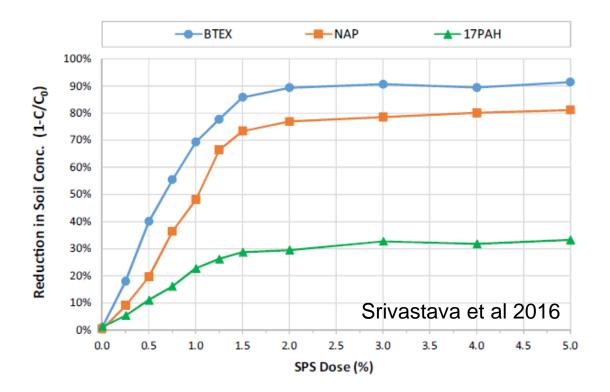
- Electron transfer from the contaminant $MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^-$
- Natural oxidant demand (NOD) can be significant (exceed OD of contaminant) and must be considered
- Field tested method in combination with soil mixing
 - One of the weaker oxidants (slower degradation)
 - Generally done as 2-step approach with a couple of days for reaction before stabilization

Activated hydrogen peroxide

- Activation by Fe^{II} (Fenton's reaction) $H_2O_2 + Fe^{2+} \rightarrow OH^{\bullet} + OH^{-} + Fe^{3+}$ $OH^{\bullet} + H_2O_2 \rightarrow HO_2^{\bullet} + H_2O$ $Fe^{3+} + HO_2^{\bullet} \rightarrow Fe^{2+} + O_2 + H^+$
- Fenton's reaction is efficient in acidic conditions (pH 2-4) and inefficient at alkaline conditions (Fe^{III} precipitation)

- Alternative: natural iron minerals or soluble organic ligands (chelates) with iron catalyst
 - The specific radicals produced depend on the pH, catalyst and oxidant concentration
- Field tested (2-step), but not typically used for soil mixing (health and safety concerns, vapor generation, very fast decomposition)

Activated persulfate


• Activation by iron, heat or **alkaline** conditions

$$\begin{split} & S_2 O_8^{2-} + Fe^{2+} \to \textbf{SO_4}^{\bullet-} + SO_4^{2-} + Fe^{3+} & (Iron) \\ & S_2 O_8^{2-} + \text{Heat } (40\text{-}70^\circ\text{C}) \to 2\textbf{SO_4}^{\bullet-} & (\text{Heat}) \\ & S_2 O_8^{2-} + \text{pH} \ (>10.5) \to \textbf{SO_4}^{\bullet-} + SO_4^{2-} & (\text{Alkaline}) \end{split}$$

- The quantity of radicals is dependent on the method of activation
- Utilizes radicals, so **fast** decomposition
 - Radical scavenging **pH dependent** (e.g. CO_3^{2-} more potent scavenger than HCO_3^{-})
- · Among the newer oxidants, so less studied
- Field tested with soil mixing and mainly lime addition for alkaline activation

Activated persulfate and cement

- Activation of persulfate under alkaline conditions (and elevated heat)
 - \rightarrow Promising candidate for a 1-step approach with cement addition

Summary

Have:

- Methods that work with a 2-step approach: (1) degradation; (2) soil strength
 - A great variety of contaminants can be degraded by redox processes
 - Both ISCR and ISCO are field tested with soil mixing and can be applied
 - The preferable reactant will dependent on a number of factors e.g. the type of contaminant, the timeframe, and the specific clean-up criteria

Want:

- Methods that work with a 1-step approach
 - Ongoing development
 - Interactions with cement hydration/curing processes are complicated
 - Promising candidates for both ISCR and ISCO

Thank you for your attention