TEORI OM IN SITU STABILISERING SOM "STAND ALONE" METODE SAMT I KOMBINATION MED REAKTANTER. METODENS MODENHED OG EKSEMPLER FRA USA

Vintermøde 2019, Temadag om Soil Mixing som afværgemetode

engineers | scientists | innovators

Christopher A. Robb, P.E. (WI and FL) Principal Engineer crobb@Geosyntec.com

March 4, 2019

ISS as a "Stand Alone" Treatment Technology

TREATMENT

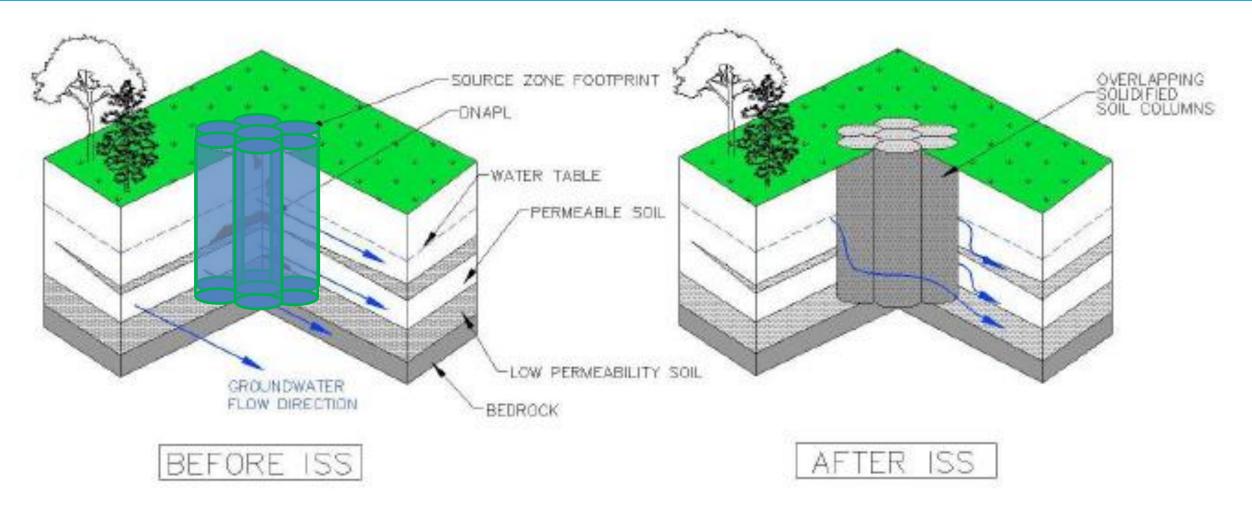
- Mixing of contaminated materials with cementitious/pozzolanic reagents:
 - Reduces contaminant migration via Advection, Hydrodynamic Dispersion and Diffusion

STABILIZATION

- Chemical reaction between reagents and contaminated materials designed to reduce the leachability of targeted contaminants by:
 - Binding free liquids
 - Immobilizing targeted contaminants
 - Reducing solubility of the contaminated material

SOLIDIFICATION

- Contaminated materials are encapsulated (physically trapped) to form a solid material that restricts contaminant migration by:
 - Reduction of permeability and effective porosity
 - Increasing compressive strength and media durability


engineers | scientists | innovators

Geosyntec^D

consultants

In Situ Stabilization/Solidification (ISS) Conceptual Model

Geosyntec Consultants

Source: Development of Performance Specifications for Solidification/Stabilization, Interstate Technology & Regulatory Council (ITRC), July 2011

ISS as a Treatment Technology

Geosyntec^D consultants

ISS as a "Stand Alone" Treatment Technology

STABILIZATION

Metals

Inorganics

• Reducing solubility of the targeted contaminants

SOLIDIFICATION

Organics, NAPL

• Reduction of permeability

- Contaminants are not destroyed or removed
- Effectiveness for some contaminants (e.g., HVOCs) may require additional design measures
- Uncertainty in long term behavior / protection of sensitive receptors

In situ Treatment (IST) Fundamentals

consultants

<u>Geosyntec</u>

- What is IST? Remediation techniques utilizing treatment reagents to destroy and/or transform contaminants via oxidation, reduction, sorption, volatilization, enhanced biodegradation reactions
- Multiple reactants available:
 - Oxidants: Permanganate, persulfate, peroxides/Fenton's reagent, ozone/hydrogen peroxide
 - Reducers: Zero Valent Iron, Calcium polysulfide
 - Sorption: Organophilic clay, activated carbon
 - Volatilization: Steam, hot air
 - Enhanced Biodegradation: Nutrients, HRC, ORC

Typical implementation limitations:

- CONTACT and DISTRIBUTION
- SOFT GROUND AFTER TREATMENT

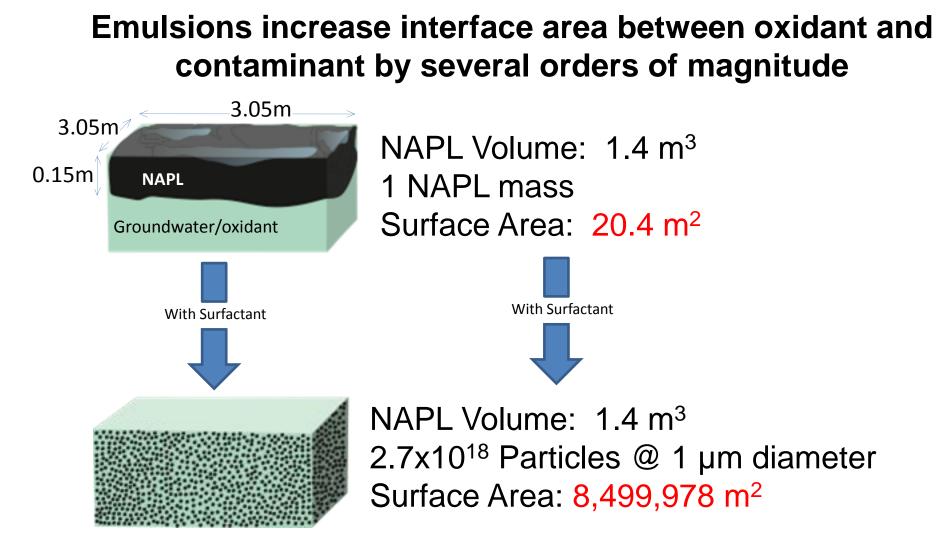
COMBINED ISS/IST TECHNOLOGY CONCEPTS

Combining technologies to capitalize on attributes

- LDA Mixing Key Attributes
 - Overcomes heterogeneities
 - Complete mixing/contact
 - Overcomes contact/distribution challenge
- IST Key Attributes
 - In situ technology that results in contaminant destruction
 - Chemistry is proven contaminants such as gasworks residuals and chlorinated solvents can be oxidized/reduced, etc.
- Combined ISS/IST Concept
 - Contaminant sequestration/destruction followed by solidification/stabilization
 - Useful when contamination destruction and greater leaching reduction is needed
 - Commingled plume applications
 - Overcomes soft ground challenges
 - ISS components can be used to heat / activate reactants (e.g., persulfate activated by cement heat of hydration and high pH)

Geosyntec^D

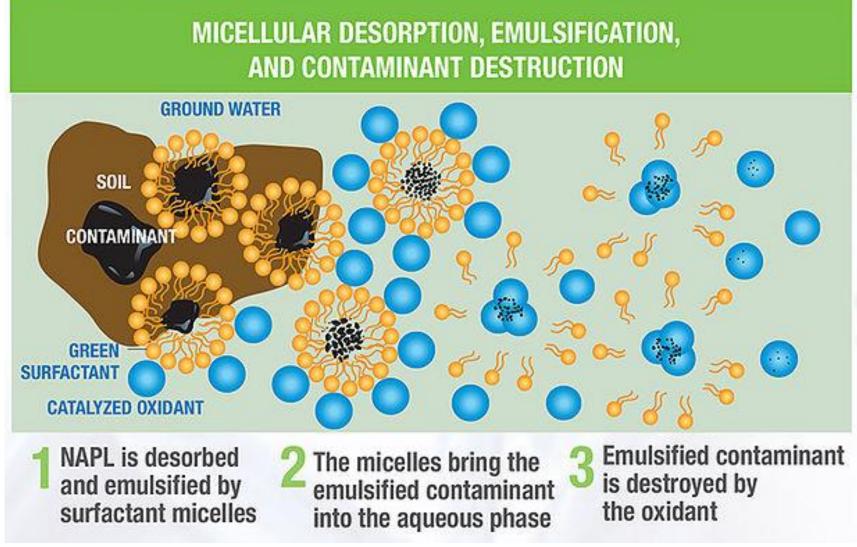
consultants


Combining ISS With Reactants

ISS or IST	Reagent	COCs Effectively Stabilized or Treated	Underlying Process	
	Portland cement	Numerous, MGP waste, gasoline and diesel range organics, metals	Binding	
	Blast Furnace Slag	Numerous, MGP waste, gasoline and diesel range organics	Binding	
	Flyash	Metals, organics and inorganics	Binding	
ISS	Cement Kiln Dust	Metals	Binding	
	Activated Carbon	Organics, Phenolic Waste	Adsorption	
	Bentonite Clay	Organics	Adsorption	
	Organophillic Clay	Phenolic waste, organics	Adsorption	
	Attapulgite Clay	Acids Waste, Metals	Adsorption	
	Lime	Inorganics, Metals	Binding	
	Zero Valent Iron	TCE, Arsenic	Reduction	
	Potassium Permanganate	TCE, Acetone, Pesticides, VOCs	Oxidation	
	Sodium Persulfate	TCE, Acetone, Pesticides, VOCs	Oxidation	
IST	Ferrous Sulfate	TCE, Acetone, Pesticides, VOCs	Oxidation	
	Calcium Polysulfide	Chromium	Reduction	
	Biological Nutrients	Acetone, Pesticides	Enhanced Bio-Degradation	
	Hot Air	VOCs	Volatilization	

Sources: Andromalos, K.B., Ruffing, D.G., and Peter, I.F., (2012) "In Situ Remediation and Stabilization of Contaminated Soils and Groundwater Using Soil Mixing Techniques With Various Reagents," SEFE7: 7th Seminar on Special Foundations Engineering and Geotechnics, Sao Paulo, Brazil, June 17-20.

Enhancing Contact Through Emulsification



Geosyntec^D

consultants

Enhancing Contact Through Emulsification

Geosyntec consultants

ISS Applications

11

ISS Equipment and Construction Techniques

Geosyntec consultants

Benefits:

- Deep treatment depths (up to 20 m)
- Highly homogeneous mixing
- Effective in both upland and sediment sites (does not require dewatering)
- Higher production rates (up to 600 m³/day)

Challenges:

- Sensitive to debris, obstructions and stiff soils
- Requires stable work platform/heavy equipment
- Requires specialty
 Contractor/expertise
- Costly maintenance requirements

Source: WRScompass. N.d. http://www.geoengineer.org/education/web-based-class-projects/geoenvironmental-remediation-technologies/stabilization-solidification?showall=1&limitstart=. Web. 27 Jan. 2016

ISS Equipment and Construction Techniques

Backhoe Mixing

Pros:

- Higher equipment mobility
- Uses conventional construction equipment
- Greater flexibility for working around debris and obstacles
- Lower mixing cost

Cons:

- Lower production rates (150 to 500 m³/day)
- Lower quality of mixing in stiff soils (less homogeneous mixing)
- Reagents are not delivered
 in-situ
- Limited treatment depth (5 to 7 m)

Plant, T., Gustafson, A., Guay, M., Corradino, K. "Equipment and Scale-Up Considerations for In-Situ Solidification of MGP Sites." MGP 2008 Conference in Dresden, Germany, March 4-6, 2008

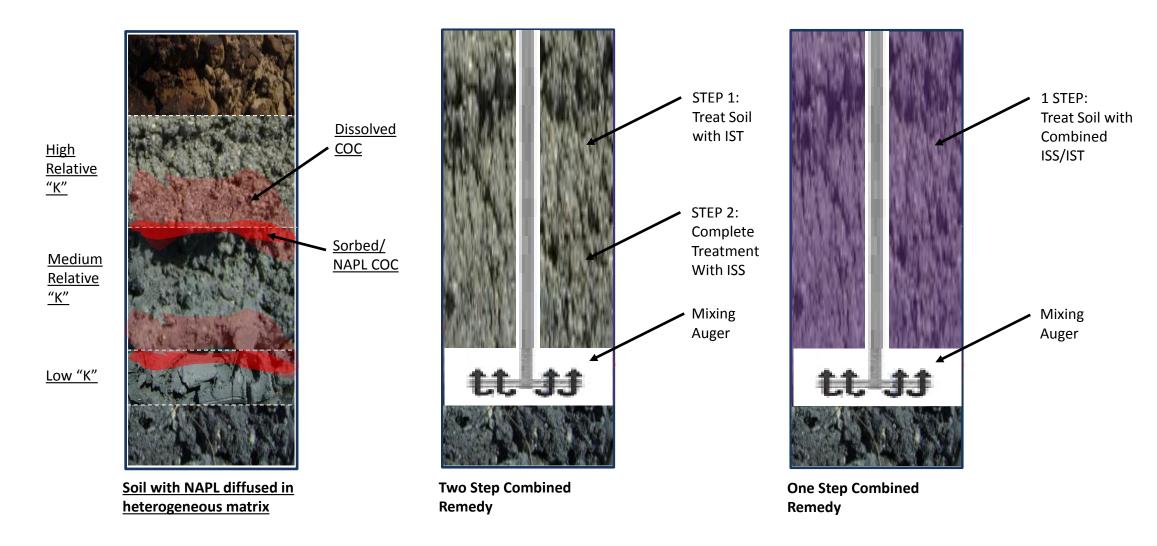
ISS Equipment and Construction Techniques

Geosyntec^D consultants

Backhoe Mounted Specialty Mixing Tools

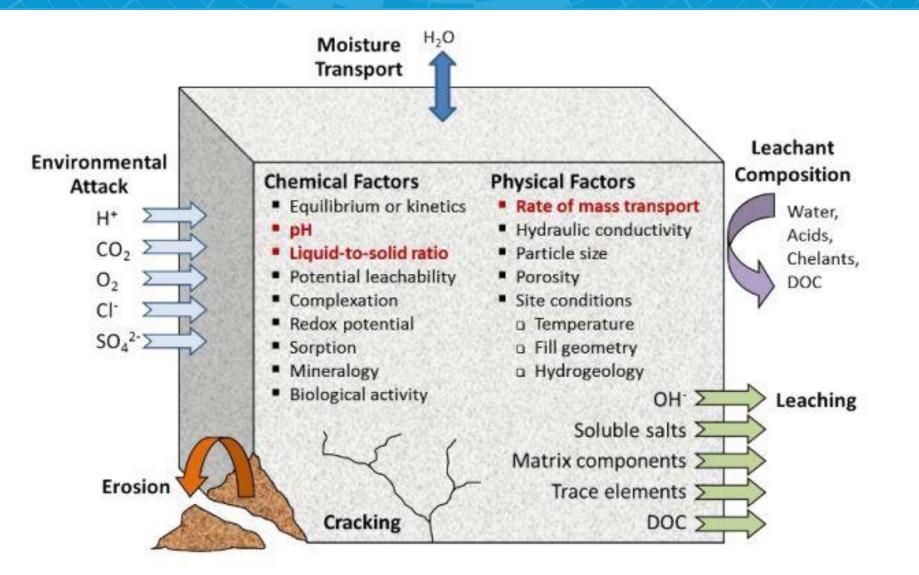
Pros:

- High-level of equipment mobility
- In-situ injection of reagents
- Greater flexibility for working around debris and obstacles
- Lower mixing cost
- Homogeneous mixing


Cons:

- Lower production rates (150 to 500 m³/day)
- Greater CQA limitations
- Limited treatment depth (5 to 10 m)
- Limitations for treating stiff soils – requires excavator support to pre-process soils

ISS/IST Combinations

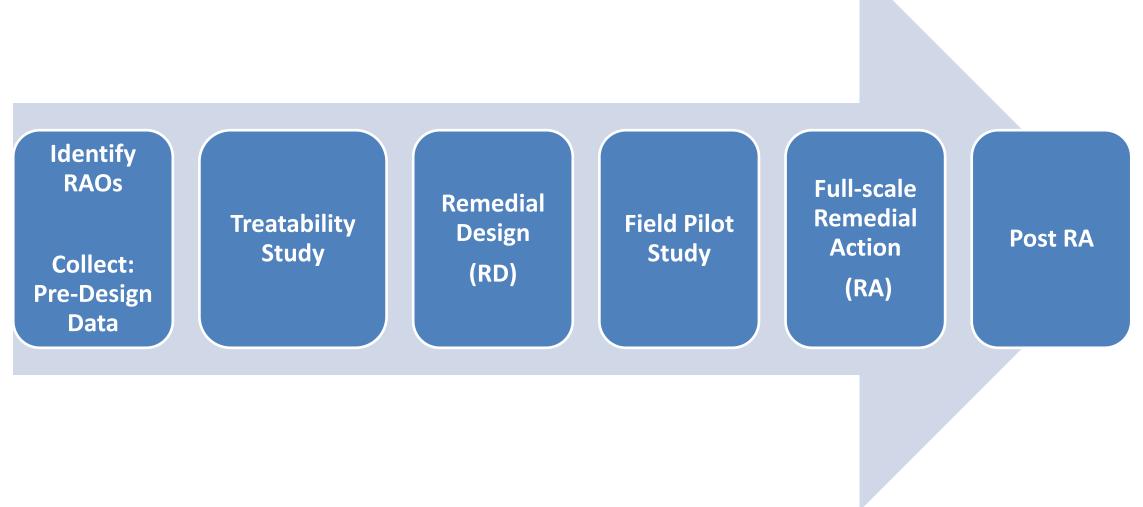

ISS/IST Design Considerations

- Contaminants of Concern Selection of Reactants
- Regulatory / Permits
- Future Site Use
- ISS/IST Treatment Limits:
 - Cut-line Approach
 - Long Term Monitoring Requirements
 - Administrative Boundaries (e.g., Railroad)
 - Depths
 - Geology / Hydrogeology Key-in Stratigraphic Layer
 - Depth to Water Table
 - Debris

ISS/IST Environmental Stressors

Source: Modified from Garrabrants and Kosson, 2005.

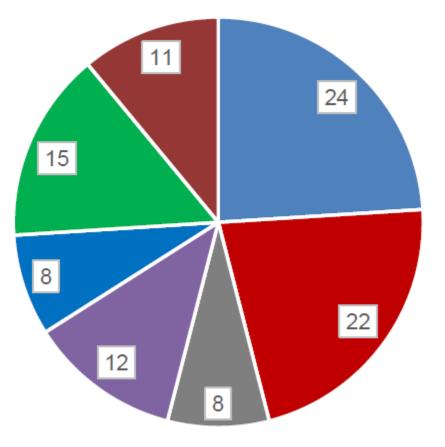
Selecting Treatment Performance Criteria


- Unconfined Compressive Strength (UCS) [ASTM D1633 or D2166]:
 - 50 psi [0.345 MPa] (common in USA)
 - Can design to increase/decrease UCS
- Hydraulic Conductivity (K) [ASTM D5084]:
 - < 1 x 10⁻⁶ cm/s to 1 x 10⁻⁷ cm/s
 - 1 to 2 orders of magnitude less than native material K is desired
- Leaching [SW-846 LEAF Method 1315]:
 - Determine interval flux; cumulative release to estimate mass transfer – What are your COCs / Receptors?
- Durability [ASTM D4843 and ASTM C1262]:
 - Wet/Dry Freeze/Thaw < 10% to 15% degradation after 12 cycles
 - May not be necessary
- Contaminant Destruction

Source: Development of Performance Specifications for Solidification/Stabilization, Interstate Technology & Regulatory Council (ITRC), July 2011.

ISS/IST Design/Implementation Process

ISS: State of the Practice in USA


- 1980s Best Demonstrated Available Technology (BDAT) for a variety of CERCLA (Superfund) and RCRA remediation projects
 - ISS is one of the most common in situ technologies used at CERCLA sites for source control (USEPA, 2010)
 - 26 States reported implementation of S/S technologies (ITRC, 2011)
- Late 1990s Preferred treatment technology for MGPs
 - Implemented in 13+ States
 - Currently being used to address impacted soil and groundwater across the USA
- Life expectancy of different S/S systems is predicted to extend from decades to thousands of years.¹
- ISS typically implemented as a "Stand Alone" technology in USA
- Limited examples of combined ISS/IST applications

¹: Bates, E., Hills, C. "Stabilization and Solidification of Contaminated Soil and Waste: A Manual of Practice" Hygge Media, 2015

ISS Selection – USEPA Superfund Program

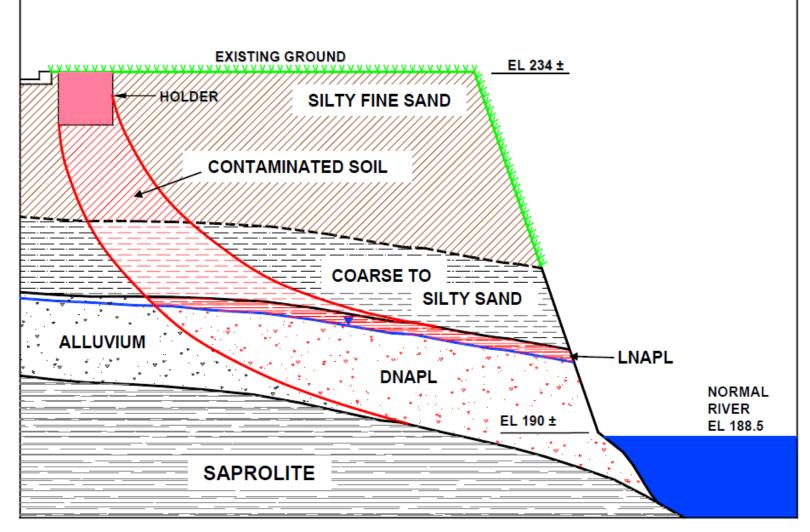
Geosyntec consultants

In-Situ Plus Ex-Situ

- Soil Vapour Extraction
- Solidification/Stabilisation
- Physical Separation
- Incineration
- Thermal Desorption
- All Other
- Bioremediation

% of 1266 Treatment Technology selections (Excluding Groundwater)

Source: Stabilization and Solidification of Contaminated Soil and Waste: A Manual of Practice, Figure 2.1: Cumulative source control technology selection from 1982-2011 After EPA-542-R-13-016, Appendix B), 2015


Columbus MGP Site

- Located in Columbus, Georgia USA
- First MGP Site Treated with ISS in USA June 1992
- ISS Metrics:
 - 69,000 m³ (90,000 yd³)
 - 10% by weight Type I Portland cement and 25% addition for the western soil/cement wall
 - Up to 10.5 m (35 ft) depth
 - 1,800 overlapping 2.4 m (8 ft) diameter auger columns
 - 20 weeks including mobilization and demobilization

Conceptual Site Model

Source: EVALUATION OF THE EFFECTIVENESS OF IN-SITU SOLIDIFICATION/STABILIZATION AT THE COLUMBUS MGP SITE, 2004

ISS Results

Geosyntec^D consultants


138 m soil/cement wall

UCS @ 28-days

• 0.41 MPa

Hydraulic Conductivity

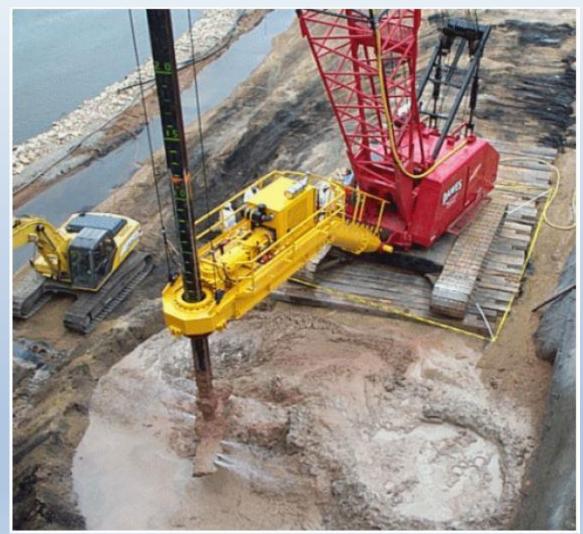
- General ISS: 1x10⁻⁵ cm/s
- Soil/Cement Wall: 1x10⁻⁶ cm/s

Comprehensive 10-year Evaluation

- Drilled cores evaluated:
 - Permeability
 - moisture content
 - UCS
 - solid phase geochemistry
 - contaminant analysis
 - leachability testing
- K (10%): 1.2 x 10⁻⁶ cm/s to 2.8 x 10⁻⁸ cm/s with an average of 8.03 x 10⁻⁷ cm/s
- UCS: 1.95 MPa (283 psi) to 6.20 MPa (899 psi); site average of 3.25 Mpa (472 psi)
- Leachability: Naphthalene only PAH to exceed Federal Drinking Water Standards
- Mineralogy: ettringite and vaterite present, no breakdown products or physical degradation of any mineralogy observed

• Post-remediation groundwater monitoring:

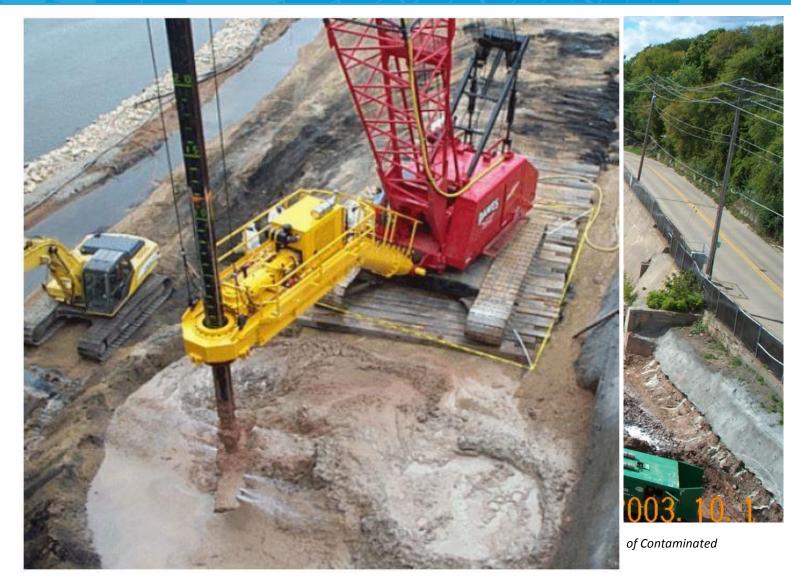
Columbus MGP Groundwater Monitoring Parameters.


Analyte	Detection Limit (ug/L)	MCL (ug/L)			
Benzene	1	5			
Toluene	1	1,000			
m,p, Zylene	2	10,000			
Ethylbenzene	1	700			
o, Zylene	1	10,000			
Total Cyanide	1	200			

Source: Evaluation of the Effectiveness of In-Situ Solidification/Stabilization at the Columbus, Georgia, Manufactured Gas Plant Site, EPRI, Palo Alto, CA: 2003. 1009095

https://www.epri.com/#/pages/product/0000000000000009095/?lang=en-US

Challenging Site Logistics


SKI

Source: Hennings, Wittenberg, R., Robb C., Luke, G. "*In Situ* Stabilization/Solidification (ISS) in the Power Industry and Applications for Coal Combustion Products (CCP)." World of Coal Ash Conference, Lexington, KY, April 22-25, 2013 engineers scientists innovators

Former Gasworks Site – Appleton, WI USA

Remediation Stats:

- BTEX, PAHs, NAPL, As, CN⁻
- Heterogenous glacial till; stiff lean clay
- 32,000 m³ ISS
- 1,200 m³ river bank sediment
- Challenge: River and Upland
 Impacts
- Solution: ISS Below Riverbank – Tie Upland to River Remediation
- Result: Cost Savings "Whole Site" Integrated Remedy

engineers | scientists | innovators

Geosyntec^D

consultants

Reinforcement and Slope Stability – Highway Bridge Piers

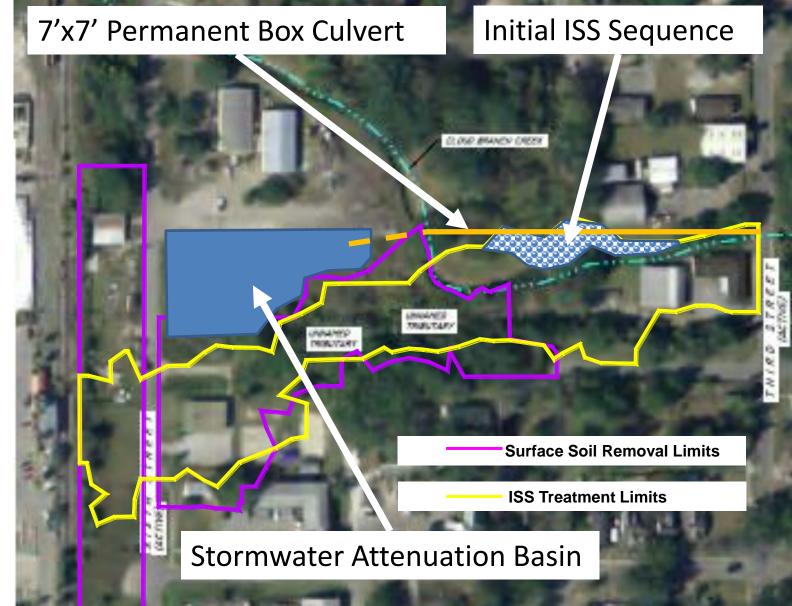
Geosyntec consultants

- Challenge: ISS around highway bridge piers, risk for pile cap destabilization
- Design: DOT stability analysis, assessment of ISS strength requirements and sequencing plan for ISS around piers
- Construction: Used combination of backhoe and auger mixing

Sanford Gasification Plant Site – Sanford, FL USA

Remediation Stats:

- BTEX, PAHs, NAPL,
- 108,000 m³ ISS
- Challenge: Creek Runs
 through ISS Area



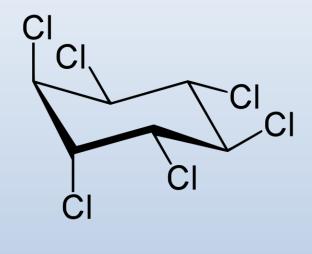
Sanford Gasification Plant Site – Sanford, FL USA

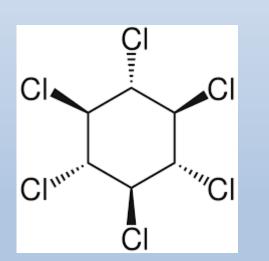
Remediation Stats:

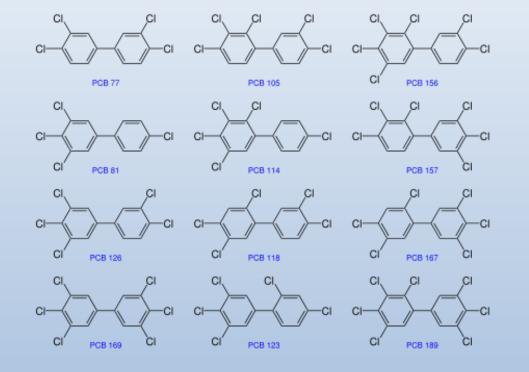
- BTEX, PAHs, NAPL,
- 108,000 m³ ISS
- Challenge: Creek Runs
 through ISS Area
- **Solution:** Permanent Surface Water Design Features Used to Eliminate Temporary Construction Elements
- Result: Successfully Completed ISS Construction through Florida's Wet Season

Hydraulic Control and Utility Installation

- Challenge: Shallow water table; unstable sand
- Solution: ISS Columns along box culvert alignment
- Result: No shoring
 or dewatering
 required


engineers | scientists | innovators


Geosyntec^D

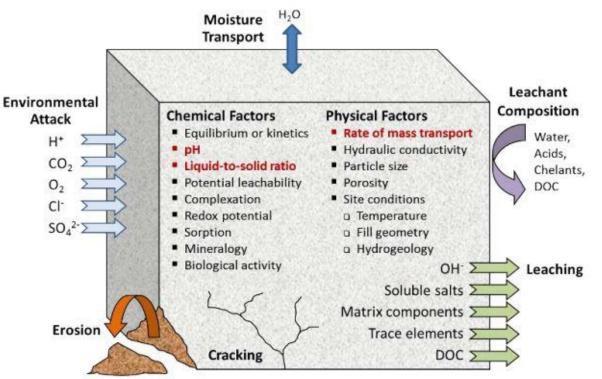

consultants

Recalcitrant Contaminants

Recalcitrant Contaminants

• Site:

Confidential Superfund Site in Florida


Challenge:

- Pesticides (alpha BHC; beta BHC) and inorganics (arsenic)
- Low pH environment (< 2 s.u.)

□ Peat/organic soils

□ Remedy near existing buildings

- Solution:
 - Tiered treatability testing to assess reagent performance and dosage
 - Mix designs targeted to different source areas

Source: Modified from Garrabrants and Kosson, 2005.

Treatability Study Method

						COMPOS	SITE SOIL IN	IDEX PROPERT	Y TESTING							
Sample II) Nui	nbers	Soil Content		re Content 1 D2216)	рН (ASTM	D4972)	USCS Soil Classificatior (ASTM D2487	n Dis	rain Size stribution TM D422)	Atterberg (ASTM D	-	Organic Conte (ASTM D2974	nt Stand	action Using lard Effort IM D698)	
Mix-Peat	: T	BD	Peat		Х	X		Х		Х			Х		X ^[2]	
Mix-Othe	r T	BD	Peat/Other Soils	;	Х	Х		Х		Х	X		Х		X ^[2]	
					PH4	SE 1A - CEM	ENT DOSA	SE OPTIMIZATI	ON - OTHER	SOILS						
Design Mix [1.2] T	Soil		Comentitious		Reagents		Water :	Volume Expansion Evaluation		UCS (ASTM D2166/D1633) ^[6]		Hydraulic Conductivity [K] (ASTM D5084) ^[7]		leaching	Leaching (SW846	
	Type (%) ^[1]			Portland Cement Type I/II (%) ^[1]	Portland Cement Type V (%) ^[1]	GGBFS (%) ^[1]	Reagents Ratio ^[1,4]		7-Day	14-Day	28-Day	28-Day	Duplicate	(SW846 Method 1312) ^[8]	Method	
Mix-PC10	Other	100	16		16		1.0	Х	Х	X	Х	Х				
Mix-SC11	Other	100	16	4		12	1.0	Х	Х	Х	Х	Х	X	Х	X	
Mix-SC12	Other	100	16		4	12	1.0	Х	Х	Х	Х	Х				
Mix-SC4	Peat	100	16	4		12	1.0	Х	Х	X	X	X				
Mix-SC5	Peat	100	20	5		15	1.0	X	Х	Х	Х	Х	X			
Mix-SC6	Peat	100	24	6		18	1.0	X	Х	Х	Х	X	X	Х	Х	
Mix-SC7	Peat	100	16		4	12	1.0	X	Х	X	X	Х				
Mix-SC8	Peat	100	20		5	15	1.0	X	Х	Х	X	Х	X			
Mix-SC9	Peat	100	24		6	18	1.0	X	Х	X	Х	X	X	Х	Х	

Recalcitrant Contaminants

Results/Next Steps:

- Phase 1 mixes met and exceeded UCS and hydraulic conductivity performance goals
- Currently optimizing dosage and reagents in Phase 1A
- Best performing Phase 1 mixes will be assessed for leaching

Source: Test America. Next Generation of Leaching Methods. Online Presentation. 2016.

Recommended References

 Development of Performance Specifications for Solidification/Stabilization, Interstate Technology & Regulatory Council (ITRC), July 2011

 Stabilization and Solidification of Contaminated Soil and Waste: A Manual of Practice, Edward Bates & Colin Hills, 2015

Questions?

Thank you for your time!

Acknowledgements: Neal Durant, Ph.D. Jule Carr, P.E. Dogus Meric, Ph.D., P.E. Dan Woeste, P.E.