<u>ATV Jord og Grundvand om</u> <u>Mikroplast i miljøet</u>

Mikroplast i regn- og spildevand – forekomst, analysemetoder, og usikkerheder

Jes Vollertsen

Department of Civil Engineering Aalborg University Denmark

The Issue of Quantification

BASEMAN Defining the baselines and standards for microplastics analyses in European waters

Citation from BASEMAN:

Although microplastics (MP) are recognized as an emerging contaminant in the environment,

currently neither sampling, extraction, purification nor identification approaches are standardized,

making the increasing numbers of MP studies hardly - if at all - comparable.

The scientific community works at reaching valid methods

But there is still a lot to do before we have a or several generally accepted and consistent method(s) for quantifying microplastics

Some fundamental problems in quantifying plastics

- Plastics is a diverse group of materials with diverse chemical characteristics
- There are of course the main groups that we know from plastic recycling, like

- There are, though, other types like "rubber"
- There are composite plastics like fiber-reinforced plastic or milk cartons
- And so on

Plastic pollution comes in all sizes and shapes

• Sizes

1 μm	10 µm	100 µm	1000 µm	1000

• Shapes

The diversity of plastics is part of what makes it hard to quantify

• Think of plastic quantification as a 3-dimensional issue:

Size x Shape x Material

- BUT, it gets a even more complicated S
- Because: Not all that is out there is plastics
- Before analyzing for plastics we have to isolate them from the matrix they are in

• And fortunately there is much more other stuff out there than plastics

Some fundamental problems in reporting microplastic finds

Microplastic finds have been reported as number of particles

- BUT: Particle counts are not a conserved base quantity – particles are brittle

Different size ranges are used (e.g. 330-5000 µm versus 10-500 µm)

Particle shape is ignored – size is reported by one number only, typically called the "particle size"

All these particles would be treated as having the same "size"

Particle numbers + sizes are important as impacts increase with decreasing size BUT Microplastic mass is needed to establish mass-balances and compare sources

And you do of course have to identify what is plastic

Methodology - overview

Stormwater sampling

7 stormwater ponds

- 3 residential
- 2 industrial
- 1 commercial
- 1 highway

WATER SAMPLE

Pumping system with 10 μm filter

- Dry weather
- Three rounds
- 1 m³

Stormwater methodology - µFTIR & Spectrum interpretation

- Scan 3 windows (169-196 tiles each)
- Analyze the whole of all 3 windows

Heat map in MPhunter Probability map indicating possible microplastic particles (PP as reference spectrum)

Automated MP recognition in MPhunter

Stormwater results

Wastewater study – 10 of Denmarks largests WWTPs were sampled

WWTP	Water volume (1000 m³/y)	Fraction of total Danish wastewater %		
Lynetten	55.044	9%		
Damhusåen	23.058	4%		
Ejby Mølle	19.426	3%		
Aalborg Vest	18.608	3%		
Marselisborg	9.319	1%		
Herning	9.197	1%		
Vejle	9.032	1%		
Kolding	8.651	1%		
Fredericia	8.340	1%		
Horsens	7.563	1%		
Total	168.238	26%		

Results WWTPs

WWTP#		1	2	3	4	5	6	7	8	9	10	Median
Raw wastewater Treated wastewater	item/L µg/L item/L µg/L	10044 181 127 3.6	8762 407 447 11.9	6830 268 42 0.6	6021 193 29 0.5	18285 482 214 5.4	4994 1189 182 11.6	2223 212 35 0.7	8149 407 19 1.4	7601 118 43 4.8	5362 61 65 3.8	7216 250 54 4.2

A drum filter polishing treated wastewater

i	Indløb	Før skivefilter	Efter skivefilter
Antal [no/L]	98	25	4
Masse [µg/L]	1,99	0,26	0,081

Fordeling efter antal partikler

Measurements at a primary settler

	Indløb	Efter primær	Udløb
Partikel antal [no/L]	567	6,14	2,90
Partikel masse [µg/L]	489	0,35	0,33

Summing up

Microplastics are present in raw wastewater, treated wastewater and stormwater

WWTPs are very efficient at retaining plastics Polishing technologies can further reduce the plastics Primary sedimentation is an important removal step

Stormwater from retention ponds contains microplastics at roughly the same concentration as treated wastewater

We do not know how efficient stormwater ponds are at retaining microplastics

